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The Gene Ontology (GO) is a controlled vocabulary widely used for the annotation of 
gene products. GO is organized in three hierarchies for molecular functions, cellular 
components, and biological processes but no relations are provided among terms across 
hierarchies. The objective of this study is to investigate three non-lexical approaches to 
identifying such associative relations in GO and compare them among themselves and to 
lexical approaches. The three approaches are: computing similarity in a vector space 
model, statistical analysis of co-occurrence of GO terms in annotation databases, and as-
sociation rule mining. Five annotation databases (FlyBase, the Human subset of GOA, 
MGI, SGD, and WormBase) are used in this study. A total of 7,665 associations were 
identified by at least one of the three non-lexical approaches. Of these, 12% were identi-
fied by more than one approach. While there are almost 6,000 lexical relations among 
GO terms, only 203 associations were identified by both non-lexical and lexical ap-
proaches. The associations identified in this study could serve as the starting point for 
adding associative relations across hierarchies to GO, but would require manual curation. 
The application to quality assurance of annotation databases is also discussed. 

1. Introduction 

The Gene Ontology™ (GO) is an important resource that has transformed the 
functional annotation of gene products by providing the curators of model organ-
ism databases with a controlled vocabulary which has rapidly become a de facto 
standard. GO has over 17,000 terms and is organized in three hierarchies for 
molecular functions, cellular components, and biological processes. However, if 
hierarchical relations (is a, part of) constitute the backbone of ontologies, GO is 
essentially a skeleton because it completely lacks associative relations across its 
three hierarchies. Such associative relations would indicate, for example, that a 
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cellular component is the location of a biological process and that a molecular 
function is involved in a biological process. 

The lack of representation in GO of the relations existing among functions, 
processes, and components severely limits the power of reasoning based on GO. 
This issue has been recognized by Bada et al. as they developed the Gene Ontol-
ogy Annotation Tool (GOAT) 1. One major task in GOAT and its companion 
project Gene Ontology Next Generation (GONG) is the acquisition of such rela-
tions and their formal representation in the Ontology Web Language (OWL) 2. 

The approach taken in GOAT for acquiring associations between GO terms 
has been to mine the annotation database Gene Ontology Annotation (GOA) for 
co-occurrence of GO terms. 600,000 associations were obtained by this method, 
excluding unreliable associations and the hierarchical relations explicitly repre-
sented in GO 1. Another approach to identifying relations among GO terms 
draws on the compositional structure of these terms. Ogren et al. found that 65% 
of all GO terms contain another GO term as a proper substring 3. Finally, in a 
previous study, we suggested that association rule mining could be applied to 
identifying dependence relations among GO terms 4. Kumar et al. successfully 
applied association rule mining techniques to the annotation databases of six 
bacterial genomes from The Institute for Genome Research (TIGR) and evalu-
ated their findings in light of formal ontological principles 5. 

In this study, rather than identifying all dependence relations, we concen-
trate specifically on associations among GO terms across ontologies. The pri-
mary objective of this study is to investigate three non-lexical approaches to 
identifying such associative relations in the Gene Ontology (GO) and compare 
them to lexical approaches. Our three approaches are: computing similarity in a 
vector space model, statistical analysis of co-occurrence of GO terms in annota-
tion databases, and association rule mining. A secondary objective is to analyze 
the consistency of the associations discovered across five model organism data-
bases. In other words, the major contribution of this study is not to define novel 
non-lexical methods for studying term-term associations, but rather to compare 
multiple existing approaches among themselves and to traditional lexical meth-
ods, systematically and across several model organism databases. 

2. Datasets 

The three approaches under investigation in this study take advantage of the 
existing annotation databases created for various model organisms. These data-
bases, made publicly available in a common format by the GO Consortium*, 
describe gene products that have been annotated with GO terms by each collabo-
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rating group. The annotation databases used in this study correspond to the ma-
jor model organisms and were downloaded from the GO website†: 
1. FlyBase (Drosophila melanogaster) 
2. Human subset of GOA (Homo sapiens) 
3. MGI (Mus musculus) 
4. SGD™ (Saccharomyces cerevisiae) 
5. WormBase (Caenorhabditis elegans) 
Details about these datasets are provided in Table 1. 
 
Table 1 – Detail of the datasets used in this study 

Dataset Developed by Web site Dated 

FlyBase FlyBase Consortium http://flybase.bio.indiana.edu/ 5/22/2004 

GOA-Human European Bioinformatics (EBI) http://www.ebi.ac.uk/GOA/ 6/4/2004 

MGI Jackson Laboratory http://www.informatics.jax.org/ 6/4/2004 

SGD Stanford University http://www.yeastgenome.org/ 6/11/ 2004 

WormBase WormBase Consortium http://www.wormbase.org/ 5/11/2004 

 
Table 2 – Number of unique gene products, GO terms, and gene product-term pairs in the five 
annotation databases under investigation 

Annotation DB # gene products # GO terms # GP-term pairs 
FlyBase 9,090 3,597 38,089 
GOA-Human 22,720 4,247 92,658 
MGI (Mouse) 14,471 3,616 65,571 
SGD (Yeast) 6,457 2,412 25,278 
WormBase 10,534 1,540 36,695 

 
The version of GO used throughout this study is the June 2004 monthly re-

lease, available from the GO website. The GO terms present in the annotation 
databases but not in the ontology were replaced by current terms whenever pos-
sible. For example, the term amine oxidase (flavin-containing) activity 
(GO:0004041) is no longer present and was replaced by amine oxidase activity 
(GO:0008131), with which it is currently asserted to be synonymous. The anno-
tations for which no current GO term existed were ignored. Also ignored were 
the annotations for which the evidence supporting the association between a gene 
product and a GO term is insufficient. In practice, we filtered out all annotations 
inferred from electronic annotation (with ‘IEA’ as evidence code), because they 
are not reviewed by curators. We did not include either the negative associations, 
marked with ‘NOT’ in the Qualifier field of the annotation files. The number of 
unique gene products, GO terms, and gene product-term pairs in each annotation 
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database is given in Table 2. These counts reflect the substitutions and filtering 
mentioned above. 

In addition to GO and the annotation databases, the evaluation relies in part 
on the Unified Medical Language System® (UMLS®) Metathesaurus®. The 
UMLS‡ is a terminology integration project developed at the U.S. National Li-
brary of Medicine. The UMLS Metathesaurus integrates many biomedical termi-
nologies, including the Gene Ontology 6. Although no relations across ontologies 
are defined in GO, such relations – contributed by other sources – may be pre-
sent in the Metathesaurus. More specifically, associative relations asserted in 
other source vocabularies are found in the MRREL table. For example, the GO 
terms chloroplast and photosynthesis are also defined in the Medical Subject 
Headings (MeSH), where they are cross-referenced. This “see also” relationship 
is recorded in the Metathesaurus between the two concepts. Similarly, the co-
occurrence of MeSH descriptors in the MEDLINE database is recorded in the 
MRCOC table of the Metathesaurus. The edition of UMLS used in this study is 
2004AA (April 2004). 

3. Methods 

The three approaches to identifying associative relations in GO, presented in 
detail below, can be summarized as follows: 
1. A vector space model in which each GO term is described by a vector of 

gene products corresponding to the annotations of this product in the anno-
tation database for a given organism. 

2. Statistical analysis of co-occurrence of GO terms in the annotations of gene 
product, where the observed frequency of co-occurrence of two GO terms is 
compared to the frequency expected under the hypothesis of independence 
of GO terms. 

3. Association rules mined from the sets of GO terms extracted from annota-
tion databases, where each transaction corresponds to the annotations of a 
given gene product in a given annotation database. 

In all three cases, the associations identified are restricted to associations across 
GO ontologies (e.g., molecular function to biological process) by filtering out 
the association within hierarchies. 

Common to the three approaches is the assumption that the dependence rela-
tions identified (e.g., among frequently associated GO terms) should reflect 
ontological relations (i.e., among entities whose existence depend on one an-
other), themselves possibly corresponding to biological relations. Based on 
different mathematical principles, the three approaches are expected to identify 
different sets of dependence relations. While the three methods essentially rely 
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on the frequency of association between two GO terms, they use different criteria 
for determining which associations are significant. 
 

3.1. Similarity in the vector space model 

Vector space models (VSMs) are frequently used in information retrieval for 
computing the similarity between documents described as vectors of keywords 7. 
A collection of gene products annotated with the controlled vocabulary provided 
by GO is in fact analogous to a collection of scientific articles indexed with the 
MeSH controlled vocabulary. Although the primary use of a collection of index-
ing terms for documents (or annotation terms for gene products) is to compute 
the similarity among documents (or gene products), our interest here is to com-
pute the similarity among terms. Therefore, we have to transpose the matrix of 
gene products by GO terms in order to obtain a matrix of GO terms by gene 
products. As usual in the VSM paradigm, the similarity between two vectors is 
represented by the angle between these vectors, measured by the dot product of 
the two (normalized) vectors. 
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Figure 1 – Similarity in the vector space model from a given annotation database 

As illustrated in Figure 1, the original matrix (gene products by GO terms) 
consists of binary values indicating the presence (1) or absence (0) of an associa-
tion between a gene product and a GO term in a given annotation database. One 
such matrix is created for each model organism. The matrix is then transposed. 
Not represented in the figure is the weighting step. A weight is applied to each 
binary association in order to lower the importance of an association between a 
GO term and a gene product when a given gene product is associated with many 



 

GO terms§. This weighting scheme, shown in Eq. (1), is known as inverse docu-
ment frequency (idf) in information retrieval. Here, the weight of each associa-
tion between a GO term and gene product j is inversely proportional to the ratio 
of the number of annotations for this gene product (nj) to the total number of 
distinct gene products in the corresponding annotation database (N). Then, each 
vector is normalized in order to compensate for differences in the number of 
genes associated with GO terms. Once the vectors are normalized, their dot 
product varies between 0 and 1 and measures the similarity between them (see 
Figure 1). A value of 0 corresponds to no similarity, while 1 indicates complete 
similarity. Term-term similarity is computed pairwise for all GO terms present, 
resulting in a half-matrix for each model organism database. We use an arbitrary 
threshold of .5 for the dot product in order to select the pairs of terms exhibiting 
a high drgree of similarity. 

 
j

j n

N
idf log=  (1) 

3.2. Co-occurrence in annotation databases 

In probability theory, two events E1 and E2 are independent when the probability 
of occurrence of the two events simultaneously, P(E1 � E2), is not greater than 
the product of the probabilities of occurrence for each event, P(E1) . P(E2). Con-
versely, when P(E1 � E2) > P(E1) . P(E2), E1 and E2 are not independent. What 
we are interested in identifying here are pairs of “non-independent” GO terms, 
whose frequency of co-occurrence (i.e., simultaneous presence in the annotation 
of a gene product) is higher than would be expected if the two terms had been 
used independently by the curators. For a given pair of GO terms (A,B), informa-
tion about their association in gene product annotations can be summarized in a 
two-way contingency table and analyzed statistically 8: 
� nAB, the number of gene products annotated with both term A and term B 
� nAb, the number of gene products annotated with term A but not term B 
� naB, the number of gene products annotated with term B but not term A 
� nab, the number of gene products annotated with neither term A or term B 

The chi-square test of independence (or Pearson’s chi-square) is often used 
to test independence between two categorical variables (here, the presence or 
absence of a given term in the annotations of genes). The chi-square (�2) statistic 
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terms by gene products, because each gene has a limited number of annota-
tions. It would, however, be crucial for computing gene-gene similarity in a 
matrix of gene-products by GO terms. 



 

relies on the difference between observed frequencies (nij) for the four events 
listed above and the frequencies expected under the hypothesis of independence. 
The �2 statistic has a chi-square distribution, specified by its degrees of freedom. 
There is one degree of freedom in the case of two-way contingency tables for 
binary variables. A large value of the �

2 statistic indicates a deviation from the 
expected frequencies. In this case, i.e., when the corresponding P-value is lower 
than the usual .05 threshold, the hypothesis of statistical independence is rejected 
and the association is considered statistically significant. One limitation of the 
chi-square test is that all expected frequencies are required to be 5 or more. In 
practice, this condition cannot be met if the frequency of the terms is small. 

An alternative to the Pearson’s chi-square test is the likelihood ratio test 
(also called G-test or G-square test). The G2 statistic compares the maximum of 
the likelihood function under two circumstances: 1) under the hypothesis of 
independence and 2) under the general, observed conditions. Like the �2 statis-
tic, the G2 statistic has a chi-square distribution (also with one degree of freedom 
in our setting). Interestingly, the G2 statistic does not have the minimum ex-
pected frequency requirements imposed by the �

2. However, for the G2 statistic 
to be computed, all observed frequencies must be greater than 0. 

In practice, for each pair of terms, we first attempt to compute a G2 statistic. 
A �2 statistic is used instead when the requirements are not met for G2. Finally, 
the association is ignored if it fails to meet both G2 and �2 requirements. Because 
of the low frequency of co-occurrence of the terms in this case, identifying their 
association is of little interest anyway. 

While both �2 and G2 indicate the existence of an association between two 
variables, neither one describes the strength of the association. Several similarity 
coefficients have been developed for this purpose 9, which could be used to 
select the pairs of terms exhibiting a strong association. In this study, however, 
we simply included all pairs of terms for which the test indicated a statistically 
significant association, regardless of the strength of the association. 

3.3. Association rule mining 

Association rules capture the association between two sets of events of arbitrary 
size and are expressed in the form: A � B, where B is the set of events that can 
be predicted from A 10. Historically, the identification of association rules was 
applied to analyzing grocery buying patterns, with rules such as {bread, milk} � 
{ sugar} expressing that customers buying bread and milk also often buy sugar. 
By applying association rule mining techniques to annotation databases, we 
expect to discover that genes annotated with the GO term T1 are also frequently 



 

annotated with T2. The set of GO terms annotating a gene product is called a 
transaction in association rule mining parlance. 

We used Christian Borgelt’s implementation of the apriori algorithm**  to 
mine association rules. Since our objective is to identify pairs of related GO 
terms, we restricted the size of the sets under investigation to two. The two major 
parameters in the algorithm are support and confidence. Support for the rule T1 
� T2 represents the proportion of genes annotated with both T1 and T2. Confi-
dence for the same rule represents the proportion of genes annotated with both T1 
and T2 among those annotated with T1. In order to restrict rules to almost system-
atic associations, we required confidence to be at least 90%. The minimum sup-
port was set to a low value (.05%) simply to eliminate “accidental” associations. 
We use the product of support by confidence to describe the strength of the 
association. 

3.4. Evaluation 

The first step of the evaluation consists in comparing the results of the three 
approaches. Associations identified independently by several approaches simul-
taneously are expected to be stronger and therefore more important. Finally, the 
presence of the association in the annotation databases of several organisms 
suggests that this association is stronger than isolated associations. What is 
evaluated here is essentially the statistical significance of the associations. 
Evaluating the ontological and biological significance of these associations is 
beyond the scope of this study. 

Additionally, we compared the results of our three approaches to lexical as-
sociations and to associations present in the UMLS Metathesaurus. 

Lexical relations. Using the method proposed by Ogren et al., we identified 
all pairs of GO terms where one term is nested as a substring in the other term 3. 
In order to reveal additional lexical relations, we did a second run after system-
atically removing the word ‘activity’ from terms in the molecular function hier-
archy. 

UMLS relations. We searched the MRREL table for the presence of asso-
ciative relations†† among concepts present in GO. Similarly, we searched the 
MRCOC table for the presence of co-occurrence relations among GO concepts 
(co-occurrence of MeSH descriptors in MEDLINE records). 

                                                           
**  http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html 
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4. Results 

4.1. Associations identified 

Examples of association identified specifically by each method are presented in 
Table 3. The first three are the methods under investigation: VSM (vector space 
model), COC (co-occurrence in annotation databases), and ARM (association 
rule mining). The others are the methods used in the evaluation: LEX (lexical 
relations), REL (associative relations in UMLS), and MDL (co-occurrence in 
MEDLINE). Quantitative results are presented in Table 4 where the number of 
associations identified by each method is broken down by category of associa-
tion. 
 
 

Table 3 – Examples of association identified specifically by each method 

Method Association 

VSM MF: ice binding  [GO:0050825] 
BP: response to freezing  [GO:0050826] 

COC MF: chromatin binding [GO:0003682] 
CC: nuclear chromatin [GO:0000790] 

ARM MF: carboxypeptidase A activity [GO:0004182] 
BP: proteolysis and peptidolysis [GO:0006508] 

LEX MF: mannosyltransferase activity  [GO:0000030] 
CC: mannosyltransferase complex  [GO:0000136] 

REL CC: cell-matrix junction  [GO:0030055] 
BP: cell adhesion  [GO:0007155] 

MDL CC: synaptic vesicle  [GO:0008021] 
BP: exocytosis  [GO:0006887] 

 
Table 4 – Number of associations identified by each method for each category of association  
(MF: molecular function; CC: cellular component; BP: biological process) 

 VSM COC ARM LEX REL MDL 
MF-CC 499 893 362 917 0 0 
MF-BP 3057 1628 577 2523 0 1 
CC-BP 760 1047 329 2053 22 469 

Total 4316 3568 1268 5493 22 470 

4.2. Overlap 

A total of 13,398 associations were identified by at least one method, 7,665 by at 
least one of the three major methods (VSM, COC, and ARM) and 5,963 by at 
least one of the evaluation methods (LEX, REL, and MDL). Of these, only 230 
associations were identified by both major and evaluation methods. Examples of 
associations identified independently but simultaneously by several methods are 
presented in Table 5. As illustrated in Figure 2, 12% of the associations identi-



 

fied by the three major methods were identified by more than one method. In 
contrast, only a few lexical associations are also present in the UMLS. 

Out of the 7,665 associations identified by at least one method, 5,950 (78%) 
came from only one annotation database. In 1,116 cases (16%), the association 
was simultaneously identified in two annotation databases, 6% in three, and 2% 
in two. Only 41 associations (less than 1%) were present in all five databases. 
Pairwise, after normalizing by the number of annotations in each database, the 
highest rates of overlap are between MGD and GOA-Human and MGD and 
WormBase, the lowest between SGD and GOA-Human and SGD and MGD. 

 
Table 5 – Examples of association identified simultaneously by several methods 
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MF: potassium channel activity  [GO:0005267] 
BP: potassium ion transport  [GO:0006813] 

X X X    

MF: chemokine activity  [GO:0008009] 
BP: immune response  [GO:0006955] 

 X X    

CC: hemoglobin complex  [GO:0005833] 
BP: oxygen transport  [GO:0015671] 

X X     

MF: taste receptor activity  [GO:0008527] 
BP: perception of taste  [GO:0050909] 

X  X    

MF: metal ion transporter activity  [GO:0046873] 
BP: metal ion transport  [GO:0030001] 

X  X X   

CC: transport vesicle  [GO:0030133] 
BP: transport  [GO:0006810] 

   X X  

CC: gap junction  [GO:0005921] 
BP: cell communication  [GO:0007154] 

X X    X 
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Figure 2 – Number of associations specific to each method (italic) or common to several methods 

5. Discussion 

Applications. The major application of our methods is of course to help enrich 
GO with associative relations across ontologies. Ontology creation and extension 
is a daunting task. However, by automatically extracting candidate relations from 
annotation databases, the approaches investigated in this study can significantly 



 

reduce the human effort required. We recommend that the associations identified 
in this study serve as the starting point for adding associative relations across 
hierarchies to GO. The associations we identified could also be used for quality 
assurance purposes, i.e., to assess the consistency and completeness of annota-
tion databases. Analogously, knowledge of frequently associated terms could be 
presented to curators in annotation environments. 

Advantages and limitations. Many associations identified by our ap-
proaches cannot be found by lexical methods. The performance of lexical meth-
ods could be improved by factoring in term variation (inflection, derivation) and 
using more rigorous parsing of the terms; it would, however, remain poor due to 
the limited number of synonyms available in GO for each term. By imposing 
constraints such as minimum frequency and statistical significance of co-
occurrence and minimum confidence for association rules, our approaches are 
more selective than the unrestricted methods used in GOAT. Limitations – not 
specific to our approaches – include the fact that what is identified is the pres-
ence of associations between GO terms, not their nature. Moreover, the manual 
curation of the associations identified remains necessary in order to assess their 
biological significance. 

Evaluation. The limited overlap between associations identified by our ma-
jor methods and the evaluation methods was somewhat unexpected. The lexical 
relation between, for example, transport and transport vesicle is ontologically 
valid but never present in annotations. Although the biomedical literature plays a 
role in both approaches, the limited overlap between annotation databases and 
MEDLINE co-occurrences may have the following explanations. Many annota-
tions are derived from sources other than the literature (e.g., inferred from se-
quence or structural similarity) and MEDLINE co-occurrences are not guaran-
teed to relate to the same gene when several genes are discussed in an article. 

Generalization. As shown in earlier studies 4,5, dependence relations can be 
found both within and across the three GO ontologies. Although this study is 
purposely restricted to the identification of associative relations across GO on-
tologies, our methods actually identified almost as many dependence relations 
within ontologies (not reported on here). The lexical method captures five times 
as many associations within ontologies than across, including a majority of direct 
parent-child associations. Because curators are unlikely to use both a parent term 
and its child in the annotation of a gene, the associations within ontologies cap-
tured by our methods are essentially between distinct subtrees of GO hierarchies 
(e.g., between metallopeptidase activity [catalytic activity subtree] and zinc ion 
binding [binding subtree]). Finally, our approaches could be applied to other 
domains (e.g., for identifying relations among terms of a clinical terminology 
using clinical databases indexed with this terminology). 



 

Future directions. Many interesting aspects of the association between GO 
terms are beyond the scope of this paper. Those issues, which we expect to ad-
dress in the near future, include the redundancy of associations across species 
and applications to the functional interpretation of experimental results. 
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